Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...

  3. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cube root. In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other ...

  4. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Here the function is and therefore the three real roots are 2, −1 and −4. In algebra, a cubic equation in one variable is an equation of the form in which a is not zero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic ...

  6. Optimal solutions for the Rubik's Cube - Wikipedia

    en.wikipedia.org/wiki/Optimal_solutions_for_the...

    Optimal solutions for the Rubik's Cube are solutions that are the shortest in some sense. There are two common ways to measure the length of a solution. The first is to count the number of quarter turns. The second is to count the number of outer-layer twists, called "face turns". A move to turn an outer layer two quarter (90°) turns in the ...

  7. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    Packing squares in a square: Optimal solutions have been proven for n from 1-10, 14-16, 22-25, 33-36, 62-64, 79-81, 98-100, and any square integer. The wasted space is asymptotically O ( a 3/5 ) . Packing squares in a circle : Good solutions are known for n ≤ 35 .

  8. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Animation depicting the process of completing the square. (Details, animated GIF version) In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of h and k. In other words, completing the square places a perfect square trinomial inside of a quadratic expression.

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    n. th root. In mathematics, an nth root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root.