Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion can be used to prove that if an integer is a perfect cube, then it must be either a multiple of 9, 1 more than a multiple of 9, or 1 less than a multiple of 9. [3] Proof: Each perfect cube is the cube of some integer n, where n is either a multiple of 3, 1 more than a multiple of 3, or 1 less than a multiple of 3. So these ...

  3. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    With even cubes, there is considerable restriction, for only 00, o 2, e 4, o 6 and e 8 can be the last two digits of a perfect cube (where o stands for any odd digit and e for any even digit). Some cube numbers are also square numbers; for example, 64 is a square number (8 × 8) and a cube number (4 × 4 × 4).

  4. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number. Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3.

  5. Perfect number - Wikipedia

    en.wikipedia.org/wiki/Perfect_number

    Perfect number. In number theory, a perfect number is a positive integer that is equal to the sum of its positive proper divisors, that is, divisors excluding the number itself. For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28.

  6. 9 - Wikipedia

    en.wikipedia.org/wiki/9

    By Mihăilescu's theorem, 9 is the only positive perfect power that is one more than another positive perfect power, since the square of 3 is one more than the cube of 2. [4] [5] Non-intersecting chords between four points on a circle

  7. Hall's conjecture - Wikipedia

    en.wikipedia.org/wiki/Hall's_conjecture

    In mathematics, Hall's conjecture is an open question on the differences between perfect squares and perfect cubes. It asserts that a perfect square y2 and a perfect cube x3 that are not equal must lie a substantial distance apart. This question arose from consideration of the Mordell equation in the theory of integer points on elliptic curves .

  8. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    Euler brick. In mathematics, an Euler brick, named after Leonhard Euler, is a rectangular cuboid whose edges and face diagonals all have integer lengths. A primitive Euler brick is an Euler brick whose edge lengths are relatively prime. A perfect Euler brick is one whose space diagonal is also an integer, but such a brick has not yet been found.

  9. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    Fourth power. In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n4 as n “ tesseracted ”, “ hypercubed ...