Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this family ...

  3. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding ...

  4. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    e. In mechanics and physics, simple harmonic motion (sometimes abbreviated SHM) is a special type of periodic motion an object experiences due to a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position. It results in an oscillation that is ...

  5. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The Navier–Stokes equations ( / nævˈjeɪ stoʊks / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of ...

  6. Euler's three-body problem - Wikipedia

    en.wikipedia.org/wiki/Euler's_three-body_problem

    Euler's three-body problem is to describe the motion of a particle under the influence of two centers that attract the particle with central forces that decrease with distance as an inverse-square law, such as Newtonian gravity or Coulomb's law. Examples of Euler's problem include an electron moving in the electric field of two nuclei, such as ...

  7. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    Propulsive maneuvers. v. t. e. In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. [1] Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars.

  8. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    t. e. In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field. A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.

  9. Abraham–Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Abraham–Lorentz_force

    In the physics of electromagnetism, the Abraham–Lorentz force (also known as the Lorentz–Abraham force) is the reaction force on an accelerating charged particle caused by the particle emitting electromagnetic radiation by self-interaction. It is also called the radiation reaction force, the radiation damping force, [1] or the self-force. [2]