Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square roots of the perfect squares (e.g., 0, 1, 4, 9, 16) are integers. In all other cases, the square roots of positive integers are irrational numbers, and hence have non-repeating decimals in their decimal representations. Decimal approximations of the square roots of the first few natural numbers are given in the following table.

  3. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Square number. Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 32 and can be written as 3 × 3 .

  4. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9. Any non-zero number considered as a complex number has n different complex n th roots, including the real ones (at most two). The n th root of 0 is zero for all positive integers n, since 0 n = 0.

  5. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater ...

  6. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The rational root theorem (or integer root theorem) may be used to show that any square root of any natural number that is not a perfect square is irrational. For other proofs that the square root of any non-square natural number is irrational, see Quadratic irrational number or Infinite descent. Geometric proof Figure 1.

  7. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    Digit-by-digit algorithm. The traditional pen-and-paper algorithm for computing the square root is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a square . If stopping after the one's place, the result computed will be the integer square root.

  8. Hall's conjecture - Wikipedia

    en.wikipedia.org/wiki/Hall's_conjecture

    Hall's conjecture. In mathematics, Hall's conjecture is an open question on the differences between perfect squares and perfect cubes. It asserts that a perfect square y2 and a perfect cube x3 that are not equal must lie a substantial distance apart. This question arose from consideration of the Mordell equation in the theory of integer points ...

  9. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    The square root of 5 is the positive real number that, when multiplied by itself, gives the prime number 5. It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as: