Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    LU decomposition. In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of ...

  3. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Square-free factorization. The algorithm determines a square-free factorization for polynomials whose coefficients come from the finite field Fq of order q = pm with p a prime. This algorithm firstly determines the derivative and then computes the gcd of the polynomial and its derivative. If it is not one then the gcd is again divided into the ...

  4. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    QR decomposition. In linear algebra, a QR decomposition, also known as a QR factorization or QU factorization, is a decomposition of a matrix A into a product A = QR of an orthonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares (LLS) problem and is the basis for a particular ...

  5. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In Python, the function cholesky from the numpy.linalg module performs Cholesky decomposition. In Matlab, the chol function gives the Cholesky decomposition. Note that chol uses the upper triangular factor of the input matrix by default, i.e. it computes = where is upper triangular. A flag can be passed to use the lower triangular factor instead.

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Not to be confused with matrix factorization of a polynomial. In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  7. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    Approximate non-negative matrix factorization. Usually the number of columns of W and the number of rows of H in NMF are selected so the product WH will become an approximation to V. The full decomposition of V then amounts to the two non-negative matrices W and H as well as a residual U, such that: V = WH + U.

  8. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    hide. In linear algebra, eigendecomposition is the factorization of a matrix into a canonical form, whereby the matrix is represented in terms of its eigenvalues and eigenvectors. Only diagonalizable matrices can be factorized in this way. When the matrix being factorized is a normal or real symmetric matrix, the decomposition is called ...

  9. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2) (x + 2) is a polynomial ...