Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other cube roots of ...

  3. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid 's Elements . If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers. — Euclid, Elements Book VII, Proposition 30.

  4. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    Cubic equation. Graph of a cubic function with 3 real roots (where the curve crosses the horizontal axis at y = 0 ). The case shown has two critical points. Here the function is and therefore the three real roots are 2, -1 and -4. In algebra, a cubic equation in one variable is an equation of the form. in which a is nonzero.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Since each prime p divides L by assumption, it must also divide one of the q factors; since each q is prime as well, it must be that p = q. Iteratively dividing by the p factors shows that each p has an equal counterpart q; the two prime factorizations are identical except for their order. The unique factorization of numbers into primes has ...

  7. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas relate the polynomial coefficients to signed sums of products of the roots r1, r2, ..., rn as follows: Vieta's formulas can equivalently be written as. for k = 1, 2, ..., n (the indices ik are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the ...

  8. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Find the cube root of 456533. The cube root ends in 7. After the last three digits are taken away, 456 remains. 456 is greater than all the cubes up to 7 cubed. The first digit of the cube root is 7. The cube root of 456533 is 77. This process can be extended to find cube roots that are 3 digits long, by using arithmetic modulo 11.

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    On a quantum computer, to factor an integer , Shor's algorithm runs in polynomial time, meaning the time taken is polynomial in , the size of the integer given as input. [6] Specifically, it takes quantum gates of order using fast multiplication, [7] or even utilizing the asymptotically fastest multiplication algorithm currently known due to ...