Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Square root. Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 52 (5 squared). In mathematics, a square root of a number x is a number y such that ; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1] For example, 4 and −4 are square roots of 16 ...

  3. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as or . It is an algebraic number, and therefore not a transcendental number.

  4. Radical symbol - Wikipedia

    en.wikipedia.org/wiki/Radical_symbol

    Radical symbol. In mathematics, the radical symbol, radical sign, root symbol, radix, or surd is a symbol for the square root or higher-order root of a number. The square root of a number x is written as. while the n th root of x is written as. It is also used for other meanings in more advanced mathematics, such as the radical of an ideal .

  5. Square root of 3 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_3

    The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as 3 {\textstyle {\sqrt {3}}} or 3 1 / 2 {\displaystyle 3^{1/2}} . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property.

  6. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9. Any non-zero number considered as a complex number has n different complex n th roots, including the real ones (at most two). The n th root of 0 is zero for all positive integers n ...

  7. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    Digit-by-digit algorithm. The traditional pen-and-paper algorithm for computing the square root is based on working from higher digit places to lower, and as each new digit pick the largest that will still yield a square . If stopping after the one's place, the result computed will be the integer square root.

  8. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater ...

  9. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    In additive number theory, Fermat 's theorem on sums of two squares states that an odd prime p can be expressed as: with x and y integers, if and only if. The prime numbers for which this is true are called Pythagorean primes . For example, the primes 5, 13, 17, 29, 37 and 41 are all congruent to 1 modulo 4, and they can be expressed as sums of ...