Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    Pythagorean trigonometric identity. The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations between the sine and cosine functions. The identity is.

  4. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    A right triangle with sides relative to an angle at the point. Inverse trigonometric functions are useful when trying to determine the remaining two angles of a right triangle when the lengths of the sides of the triangle are known. Recalling the right-triangle definitions of sine and cosine, it follows that.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The trigonometric function are periodic functions, and their primitive period is 2π for the sine and the cosine, and π for the tangent, which is increasing in each open interval (π/2 + kπ, π/2 + (k + 1)π). At each end point of these intervals, the tangent function has a vertical asymptote .

  6. Sec-1 - Wikipedia

    en.wikipedia.org/wiki/Sec-1

    Sec-1, SEC-1, sec-1, or sec1 may refer to: . sec x−1 = sec(x)−1 = exsec(x) or exsecant of x, an old trigonometric function; sec1 y = sec1 (y), sometimes interpreted as arcsec(y) or arcsecant of y, the compositional inverse of the trigonometric function secant (see below for ambiguity)

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Pythagorean identities. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.

  8. Integral of the secant function - Wikipedia

    en.wikipedia.org/wiki/Integral_of_the_secant...

    A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor.

  9. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    The golden ratio's negative −φ and reciprocal φ−1 are the two roots of the quadratic polynomial x2 + x − 1. The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial.