Luxist Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    In mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index (also sometimes called the degree). This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r (the root ...

  3. Cyclotomic polynomial - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_polynomial

    Cyclotomic polynomial. In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of and is not a divisor of for any k < n.

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  5. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    If division is much more costly than multiplication, it may be preferable to compute the inverse square root instead. Other methods are available to compute the square root digit by digit, or using Taylor series . Rational approximations of square roots may be calculated using continued fraction expansions .

  6. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Graeffe's method. In mathematics, Graeffe's method or Dandelin–Lobachesky–Graeffe method is an algorithm for finding all of the roots of a polynomial. It was developed independently by Germinal Pierre Dandelin in 1826 and Lobachevsky in 1834. In 1837 Karl Heinrich Gräffe also discovered the principal idea of the method. [1]

  7. Root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithms

    Root-finding algorithms. In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f, from the real numbers to real numbers or from the complex numbers to the complex numbers, is a number x such that f(x) = 0. As, generally, the zeros of a function ...

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Use of Newton's method to compute square roots. Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x2 = a is equivalent to finding a root of the function f(x) = x2 − a. The Newton iteration defined by this function is given by.

  9. Cauchy–Euler equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Euler_equation

    Cauchy–Euler equation. In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential ...